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Motivations
Provided that the true relationship between the response and the
predictors is approximately linear, the least squares estimates will have
low bias.

If , then the least squares estimates tend to also have low
variance, and hence will perform well on test observations.

However, if  is not much larger than , then there can be a lot of
variability in the least squares fit, resulting in overfitting and
consequently poor predictions on future observations not used in model
training.

If , then there is no longer a unique least squares coefficient
estimate.

In practice, some or many of the variables are in fact not associated with
the response. Including such irrelevant variables leads to unnecessary
complexity in the resulting model. By removing these variables, we can
obtain a model that is more easily interpreted.

n >> p

n p

p > n
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Objective of Today's Session

Subset Selection Methods

Best Subset Selection

Forward Stepwise Selection

Backward Stepwise Selection

Shrinkage Methods

Ridge Regression

Lasso Regression
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Subset Selection Methods
This approach involves identifying a subset of the  predictors that we believe
to be related to the response. We then fit a model using least squares on the
reduced set of variables.

library(ISLR2)

options(digits=3)

Hitters <- na.omit(Hitters)

dim(Hitters)

[1] 263  20

names(Hitters)

 [1] "AtBat"     "Hits"      "HmRun"     "Runs"      "RBI"       "Walks"    

 [7] "Years"     "CAtBat"    "CHits"     "CHmRun"    "CRuns"     "CRBI"     

[13] "CWalks"    "League"    "Division"  "PutOuts"   "Assists"   "Errors"   

[19] "Salary"    "NewLeague"

p
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Best Subset Selection

The regsubsets() function performs best subset selection by identifying
the best model that contains a given number of predictors, where best is
quantified by minimizing

The summary() command outputs the best set of variables for each model
size.

library(leaps)

regfit.full <- regsubsets(Salary ~ ., Hitters)

#summary(regfit.full)

RSS =
n

∑
i=1

(yi − β0 −

p

∑
j=1

βjxij)

2
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By default, regsubsets() only reports results up to the best eight-variable
model. But the nvmax option can be used to return as many variables as
are desired.

regfit.full <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19)

reg.summary <- summary(regfit.full)

names(reg.summary)

[1] "which"  "rsq"    "rss"    "adjr2"  "cp"     "bic"    "outmat" "obj"

 statistic increases from 32%, when only one variable is included in the
model, to almost 55%, when all variables are included.

As expected, the  statistic increases monotonically as more variables
are included.

reg.summary$rsq

 [1] 0.321 0.425 0.451 0.475 0.491 0.509 0.514 0.529 0.535 0.540 0.543 0.544

[13] 0.544 0.545 0.545 0.546 0.546 0.546 0.546

R2

R2
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Plotting RSS, adjusted , and BIC for all of the models at once will help us
decide which model to select.

plot(reg.summary$rss, xlab = "Number of Variables",

    ylab = "RSS", type = "l")

R2
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which.max(reg.summary$adjr2)

[1] 11

plot(reg.summary$adjr2, xlab = "Number of Variables",

    ylab = "Adjusted RSq", type = "l")

points(11, reg.summary$adjr2[11], col = "red", cex = 2, 

    pch = 20)

8 / 21



In a similar fashion we can plot the BIC statistics.

which.min(reg.summary$bic)

[1] 6

plot(reg.summary$bic, xlab = "Number of Variables",

    ylab = "BIC", type = "l")

points(6, reg.summary$bic[6], col = "red", cex = 2,

    pch = 20)
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Forward and Backward Stepwise Selection

We can also use the regsubsets() function to perform forward stepwise or
backward stepwise selection, using the argument method = "forward" or
method = "backward".

regfit.fwd <- regsubsets(Salary ~ ., data = Hitters,

    nvmax = 19, method = "forward")

regfit.bwd <- regsubsets(Salary ~ ., data = Hitters,

    nvmax = 19, method = "backward")

For this data, the best one-variable through six-variable models are each
identical for best subset and forward selection.

However, the best seven-variable models identified by forward stepwise
selection, backward stepwise selection, and best subset selection are
different.
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coef(regfit.full, 7)

(Intercept)        Hits       Walks      CAtBat       CHits      CHmRun 

     79.451       1.283       3.227      -0.375       1.496       1.442 

  DivisionW     PutOuts 

   -129.987       0.237

coef(regfit.fwd, 7)

(Intercept)       AtBat        Hits       Walks        CRBI      CWalks 

    109.787      -1.959       7.450       4.913       0.854      -0.305 

  DivisionW     PutOuts 

   -127.122       0.253

coef(regfit.bwd, 7)

(Intercept)       AtBat        Hits       Walks       CRuns      CWalks 

    105.649      -1.976       6.757       6.056       1.129      -0.716 

  DivisionW     PutOuts 

   -116.169       0.303
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Choosing Among Models Using Cross-Validation

predict.regsubsets <- function(object, newdata, id, ...) {

  form <- as.formula(object$call[[2]])

  mat <- model.matrix(form, newdata)

  coefi <- coef(object, id = id)

  xvars <- names(coefi)

  mat[, xvars] %*% coefi

}

k <- 10

n <- nrow(Hitters)

set.seed(1)

folds <- sample(rep(1:k, length = n))

cv.errors <- matrix(NA, k, 19, dimnames = list(NULL, paste(1:19)))

for (j in 1:k) {

  best.fit <- regsubsets(Salary ~ ., data = Hitters[folds != j, ],

       nvmax = 19)

for (i in 1:19) {

    pred <- predict(best.fit, Hitters[folds == j, ], id = i)

    cv.errors[j, i] <-

         mean((Hitters$Salary[folds == j] - pred)^2)

   }

}
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mean.cv.errors <- apply(cv.errors, 2, mean)

plot(mean.cv.errors, type = "b")

regfit.best <- regsubsets(Salary ~ ., data = Hitters,

    nvmax = 19)

coef(regfit.best, 10)

(Intercept)       AtBat        Hits       Walks      CAtBat       CRuns 

    162.535      -2.169       6.918       5.773      -0.130       1.408 

       CRBI      CWalks   DivisionW     PutOuts     Assists 

      0.774      -0.831    -112.380       0.297       0.283
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Shrinkage Methods
It involves fitting a model involving all  predictors. However, the
estimated coefficients are shrunken towards zero relative to the least
squares estimates.

It has the effect of reducing variance.

Ridge Regression: the ridge regression coefficient estimates will
approach zero.

Lasso Regression: some of the lasso regression coefficients may be
estimated to be exactly zero. Hence, it can also perform variable selection.

library(glmnet)

x <- model.matrix(Salary ~ ., Hitters)[, -1]

y <- Hitters$Salary

p
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Ridge Regression
Ridge regression will always generate a model involving all  predictors.

Ridge regression is very similar to least squares, except that the
coefficients are estimated by minimizing

grid <- 10^seq(10, -2, length = 100)

ridge.mod <- glmnet(x, y, alpha = 0, lambda = grid)

By default the glmnet() function performs ridge regression for an
automatically selected range of  values.

Here we have chosen to implement the function over a grid of values
ranging from 
to .

Note that by default, the glmnet() function standardizes the variables so
that they are on the same scale. To turn off this default setting, use the
argument 'standardize = FALSE'.

p

RSS + λ

p

∑
j=1

β2
j

λ

λ = 1010 10−2
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In general, it would be better to use cross-validation to choose the tuning
parameter .

set.seed(1)

train <- sample(1:nrow(x), nrow(x) / 2)

test <- (-train)

y.test <- y[test]

set.seed(1)

cv.out <- cv.glmnet(x[train, ], y[train], alpha = 0)

plot(cv.out)

λ
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bestlam <- cv.out$lambda.min; bestlam

[1] 326

ridge.pred <- predict(ridge.mod, s = bestlam, newx = x[test, ])

mean((ridge.pred - y.test)^2)

[1] 119114

out <- glmnet(x, y, alpha = 0)

predict(out, type = "coefficients", s = bestlam)[1:20, ]

(Intercept)       AtBat        Hits       HmRun        Runs         RBI 

    15.4438      0.0772      0.8591      0.6010      1.0637      0.8794 

      Walks       Years      CAtBat       CHits      CHmRun       CRuns 

     1.6244      1.3525      0.0113      0.0575      0.4068      0.1146 

       CRBI      CWalks     LeagueN   DivisionW     PutOuts     Assists 

     0.1212      0.0530     22.0914    -79.0403      0.1662      0.0294 

     Errors  NewLeagueN 

    -1.3609      9.1249

As expected, none of the coefficients are zero — ridge regression does not
perform variable selection!
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Lasso Regression
Lasso regression is a relatively recent alternative to ridge regression that
perform variable selection. The lasso coefficients minimize

lasso.mod <- glmnet(x[train, ], y[train], alpha = 1, lambda = grid)

plot(lasso.mod)

RSS + λ

p

∑
j=1

∣∣βj∣∣

18 / 21



perform cross-validation and compute the associated test error

set.seed(1)

cv.out <- cv.glmnet(x[train, ], y[train], alpha = 1)

plot(cv.out)

bestlam <- cv.out$lambda.min

lasso.pred <- predict(lasso.mod, s = bestlam, newx = x[test, ])

mean((lasso.pred - y.test)^2)

[1] 143674
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out <- glmnet(x, y, alpha = 1, lambda = grid)

lasso.coef <- predict(out, type = "coefficients", s = bestlam)[1:20, 

lasso.coef

(Intercept)       AtBat        Hits       HmRun        Runs         RBI 

     1.2748     -0.0550      2.1803      0.0000      0.0000      0.0000 

      Walks       Years      CAtBat       CHits      CHmRun       CRuns 

     2.2919     -0.3381      0.0000      0.0000      0.0283      0.2163 

       CRBI      CWalks     LeagueN   DivisionW     PutOuts     Assists 

     0.4171      0.0000     20.2862   -116.1676      0.2375      0.0000 

     Errors  NewLeagueN 

    -0.8563      0.0000

lasso.coef[lasso.coef != 0]

(Intercept)       AtBat        Hits       Walks       Years      CHmRun 

     1.2748     -0.0550      2.1803      2.2919     -0.3381      0.0283 

      CRuns        CRBI     LeagueN   DivisionW     PutOuts      Errors 

     0.2163      0.4171     20.2862   -116.1676      0.2375     -0.8563
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