
Polynomial Regression and Basic SplinesPolynomial Regression and Basic Splines
Yuan BianYuan Bian

University of Western OntarioUniversity of Western Ontario

2022/11/102022/11/10

1 / 161 / 16

Moving Beyond Linearity:
So far, we have mostly focused on linear models.

Linear models are relatively simple to describe and implement.

Standard linear regression can have significant limitations in terms of
predictive power, due to the linearity assumption.

Objective of Today's Session

We relax the linearity assumption while still attempting to maintain as
much interpretability as possible.

We do this by examining some simple extensions of linear models:

polynomial regression: extends the linear model by raising the
original predictors to a power

regression splines: more flexible extension of the polynomials

y = f(x) + ϵ

2 / 16

Polynomial Regression

library(ISLR2)
attach(Wage)
agelims <- range(age)
plot(age, wage, xlim = agelims, cex = .5, col = "darkgrey")

f(x) = β0 + β1x + β2x
2 + ⋯

3 / 16

The poly() command returns a matrix whose columns are a basis of
orthogonal polynomials

fit <- lm(wage ~ poly(age, 4), data = Wage)
coef(summary(fit))

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 111.7 0.729 153.28 0.00e+00
poly(age, 4)1 447.1 39.915 11.20 1.48e-28
poly(age, 4)2 -478.3 39.915 -11.98 2.36e-32
poly(age, 4)3 125.5 39.915 3.14 1.68e-03
poly(age, 4)4 -77.9 39.915 -1.95 5.10e-02

We can also use poly() to obtain age, age^2, age^3 and age^4 directly,
by setting raw = T.

fit2 <- lm(wage ~ poly(age, 4, raw = T), data = Wage)
coef(summary(fit2))

 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.84e+02 6.00e+01 -3.07 0.002180
poly(age, 4, raw = T)1 2.12e+01 5.89e+00 3.61 0.000312
poly(age, 4, raw = T)2 -5.64e-01 2.06e-01 -2.74 0.006261
poly(age, 4, raw = T)3 6.81e-03 3.07e-03 2.22 0.026398
poly(age, 4, raw = T)4 -3.20e-05 1.64e-05 -1.95 0.051039

4 / 16

There are several other equivalent ways of fitting this model. For example

fit2a <- lm(wage ~ age + I(age^2) + I(age^3) + I(age^4), data = Wage)
coef(fit2a)

(Intercept) age I(age^2) I(age^3) I(age^4)
 -1.84e+02 2.12e+01 -5.64e-01 6.81e-03 -3.20e-05

the function I() protects terms like age^2 (the ^ symbol has a special
meaning in formulas).

fit2b <- lm(wage ~ cbind(age, age^2, age^3, age^4), data = Wage)
coef(fit2a)

(Intercept) age I(age^2) I(age^3) I(age^4)
 -1.84e+02 2.12e+01 -5.64e-01 6.81e-03 -3.20e-05

5 / 16

age.grid <- seq(from = agelims[1], to = agelims[2])
preds <- predict(fit, newdata = list(age = age.grid), se = TRUE)
se.bands <- cbind(preds$fit + 2 * preds$se.fit,
 preds$fit - 2 * preds$se.fit)
plot(age, wage, xlim = agelims, cex = .5, col = "darkgrey")
title("Degree-4 Polynomial")
lines(age.grid, preds$fit, lwd = 2, col = "blue")
matlines(age.grid, se.bands, lwd = 1, col = "blue", lty = 3)

6 / 16

We mentioned earlier that whether or not an orthogonal set of basis functions
is produced in the poly() function will not affect the model obtained in a
meaningful way.

preds2 <- predict(fit2, newdata = list(age = age.grid),
 se = TRUE)
max(abs(preds$fit - preds2$fit))

[1] 7.82e-11

7 / 16

In performing a polynomial regression we must decide on the degree of
the
polynomial to use. One way to do this is by using hypothesis
tests.

fit.1 <- lm(wage ~ age, data = Wage)
fit.2 <- lm(wage ~ poly(age, 2), data = Wage)
fit.3 <- lm(wage ~ poly(age, 3), data = Wage)
fit.4 <- lm(wage ~ poly(age, 4), data = Wage)
fit.5 <- lm(wage ~ poly(age, 5), data = Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5)

Analysis of Variance Table

Model 1: wage ~ age
Model 2: wage ~ poly(age, 2)
Model 3: wage ~ poly(age, 3)
Model 4: wage ~ poly(age, 4)
Model 5: wage ~ poly(age, 5)
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 2998 5022216
2 2997 4793430 1 228786 143.59 <2e-16 ***
3 2996 4777674 1 15756 9.89 0.0017 **
4 2995 4771604 1 6070 3.81 0.0510 .
5 2994 4770322 1 1283 0.80 0.3697

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8 / 16

Drawbacks of using polynomial regression

Polynomial basis needs a large number of basis functions in order to
show local characteristics of the data.

Polynomials don’t do a good job in the tails.

They are too sensitive to the outliers.

These drawbacks led to the development of the so called splines. Today, we
will focus on the polynomial splines with the B-Spline Basis and natural cubic
splines. Other popularly used splines are smoothing splines.

B-splines are basis functions that make the calculation of splines much
easier.

Each B-spline is non-zero in a small interval and zero outside this
interval.

They are formed by polynomial pieces that join each other in the knots; A
B-spline of order can be calculated recursively using the ones with
lower order.

More details see De Boor, C. (2001) A Practical Guide to Splines.

m

9 / 16

Regression Splines
Considering B-splines of order with interior knots we can write a
function as:

In order to use splines, you need to specify any two of the following:

order : (Linear), (Quadratic), (Cubic),

of interior knots : (one interior knots at 50th percentiles of),
 (two interior knots at 33.33th and 66.67th percentiles of) ...;

Instead, you can also specify the exact location of the interior knots (place
more knots in places where we feel the function might vary rapidly, and
place fewer knots where it seems more stable)

degree of freedom:

m k
f

f(x) =
m+k

∑
i=1

ciBi,m(x).

m m = 2 m = 3 m = 4

k k = 1 x
k = 2 x

df = m + k

10 / 16

B-splines of order 2 (piecewise linear)

library(splines)
x <- seq(from=0,to=1,by=0.01)
matplot(x, bs(x, df=6, intercept = T, degree=1), type = "l",
 xlab = "", ylab = "")

11 / 16

B-splines of order 4 (piecewise cubic)

matplot(x, bs(x, df=8, intercept = T), type = "l",
 xlab = "", ylab = "")

12 / 16

fit <- lm(wage ~ bs(age, knots = c(25, 40, 60)), data = Wage)
pred <- predict(fit, newdata = list(age = age.grid), se = T)
plot(age, wage, col = "gray")
lines(age.grid, pred$fit, lwd = 2)
lines(age.grid, pred$fit + 2 * pred$se, lty = "dashed")
lines(age.grid, pred$fit - 2 * pred$se, lty = "dashed")

13 / 16

Here we have prespecified knots at ages , , and . This produces a spline
with six basis functions. (Recall that a cubic spline with three knots has seven
degrees of freedom; these degrees of freedom are used up by an intercept,
plus six basis functions.)

dim(bs(age, knots = c(25, 40, 60)))

[1] 3000 6

dim(bs(age, df = 6))

[1] 3000 6

attr(bs(age, df = 6), "knots")

 25% 50% 75%
33.8 42.0 51.0

In this case R chooses knots at ages , and , which correspond to
the 25th, 50th, and 75th percentiles of age.

25 40 60

33.8, 42.0 51.0

14 / 16

Unfortunately, regression splines can have high variance at the boundary
of the predictors.
A natural spline is a regression spline with additional boundary
constraints to produce more stable estimates at the boundaries.

fit2 <- lm(wage ~ ns(age, df = 4), data = Wage)
pred2 <- predict(fit2, newdata = list(age = age.grid), se = T)
plot(age, wage, col = "gray")
lines(age.grid, pred2$fit, col = "red", lwd = 2)
lines(age.grid, pred2$fit + 2 * pred2$se, lty = "dashed")
lines(age.grid, pred2$fit - 2 * pred2$se, lty = "dashed")

15 / 16

Reference

James, G, Witten, D, Hastie, T, Tibshirani, R (2013) An Introduction to Statistical
Learning. Springer, New York, Second edition.

16 / 16

