
Tree-Based MethodsTree-Based Methods
Yuan BianYuan Bian

University of Western OntarioUniversity of Western Ontario

2022/12/012022/12/01

1 / 231 / 23

Classification Trees

Dataset Carseats

In Carseats, Sales is a continuous variable, and so we begin by recoding it
as a binary variable, called High, which takes on a value of Yes if the Sales
variable exceeds 8, and takes on a value of No otherwise

library(tree)

library(ISLR2)

attach(Carseats)

High <- factor(ifelse(Sales <= 8, "No", "Yes"))

Carseats <- data.frame(Carseats, High)

tree.carseats <- tree(High ~ . - Sales, Carseats)

Goal: to predict High using all variables but Sales

2 / 23

The summary() function lists the variables that are used as internal nodes
in the tree, the number of terminal nodes, and the (training) error rate.

summary(tree.carseats)

Classification tree:

tree(formula = High ~ . - Sales, data = Carseats)

Variables actually used in tree construction:

[1] "ShelveLoc" "Price" "Income" "CompPrice" "Population"

[6] "Advertising" "Age" "US"

Number of terminal nodes: 27

Residual mean deviance: 0.4575 = 170.7 / 373

Misclassification error rate: 0.09 = 36 / 400

3 / 23

plot(tree.carseats)

text(tree.carseats, pretty = 0)

4 / 23

In order to properly evaluate the performance of a classification tree, we
must estimate the test error rather than simply computing the training
error.

set.seed(2)

train <- sample(1:nrow(Carseats), 200)

Carseats.test <- Carseats[-train,]

High.test <- High[-train]

tree.carseats <- tree(High ~ . - Sales, Carseats, subset = train)

tree.pred <- predict(tree.carseats, Carseats.test, type = "class")

table(tree.pred, High.test)

 High.test

tree.pred No Yes

 No 104 33

 Yes 13 50

(104 + 50) / 200

[1] 0.77

5 / 23

Next, we perform cross-validation in order to determine the optimal level
of tree complexity.

We use the argument FUN = prune.misclass to indicate that we want the
classification error rate to guide the cross-validation and pruning process.

set.seed(7)

cv.carseats <- cv.tree(tree.carseats, FUN = prune.misclass)

cv.carseats

$size

[1] 21 19 14 9 8 5 3 2 1

$dev

[1] 75 75 75 74 82 83 83 85 82

$k

[1] -Inf 0.0 1.0 1.4 2.0 3.0 4.0 9.0 18.0

$method

[1] "misclass"

attr(,"class")

[1] "prune" "tree.sequence"

6 / 23

Despite its name, dev corresponds to the number of cross-validation
errors.

par(mfrow = c(1, 2))

plot(cv.carseats$size, cv.carseats$dev, type = "b")

plot(cv.carseats$k, cv.carseats$dev, type = "b")

7 / 23

prune.carseats <- prune.misclass(tree.carseats, best = 9)

plot(prune.carseats)

text(prune.carseats, pretty = 0)

8 / 23

How well does this pruned classification tree perform on the test set?

tree.pred <- predict(prune.carseats, Carseats.test, type = "class")

table(tree.pred, High.test)

 High.test

tree.pred No Yes

 No 97 25

 Yes 20 58

(97 + 58) / 200

[1] 0.775

9 / 23

Regression Trees

Dataset Boston

set.seed(1)

train <- sample(1:nrow(Boston), nrow(Boston) / 2)

tree.boston <- tree(medv ~ ., Boston, subset = train)

summary(tree.boston)

Regression tree:

tree(formula = medv ~ ., data = Boston, subset = train)

Variables actually used in tree construction:

[1] "rm" "lstat" "crim" "age"

Number of terminal nodes: 7

Residual mean deviance: 10.38 = 2555 / 246

Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max.

-10.1800 -1.7770 -0.1775 0.0000 1.9230 16.5800

10 / 23

plot(tree.boston)

text(tree.boston, pretty = 0)

lstat measures the percentage of individuals with lower socioeconomic
status, while rm corresponds to the average number of rooms.

The tree indicates that larger values of rm, or lower values of lstat,
correspond to more expensive houses.

11 / 23

whether pruning the tree will improve performance?

cv.boston <- cv.tree(tree.boston)

plot(cv.boston$size, cv.boston$dev, type = "b")

In this case, the most complex tree under consideration is selected by
cross-validation.

12 / 23

However, if we wish to prune the tree, we could do so as follows, using
the prune.tree() function:

prune.boston <- prune.tree(tree.boston, best = 5)

plot(prune.boston)

text(prune.boston, pretty = 0)

13 / 23

In keeping with the cross-validation results, we use the unpruned tree to
make predictions on the test set.

yhat <- predict(tree.boston, newdata = Boston[-train,])

boston.test <- Boston[-train, "medv"]

boston.test <- Boston[-train, "medv"]

plot(yhat, boston.test); abline(0, 1)

mean((yhat - boston.test)^2)

[1] 35.28688

14 / 23

Bagging and Random Forests
Bagging is simply a special case of a random forest with .

The argument indicates that all 12 predictors should be
considered for each split of the tree

library(randomForest)

set.seed(1)

bag.boston <- randomForest(medv ~ ., data = Boston,

 subset = train, mtry = 12, importance = TRUE)

m = p

mtry = 12

15 / 23

How well does this bagged regression tree perform on the test set?

yhat.bag <- predict(bag.boston, newdata = Boston[-train,])

plot(yhat.bag, boston.test); abline(0, 1)

mean((yhat.bag - boston.test)^2)

[1] 23.41916

16 / 23

Growing a random forest proceeds in exactly the same way, except that
we use a smaller value of the mtry argument.

By default, randomForest() uses variables when building a random
forest of regression trees, and variables when building a random
forest of classification trees.

Here we use mtry = 6.

set.seed(1)

rf.boston <- randomForest(medv ~ ., data = Boston,

 subset = train, mtry = 6, importance = TRUE)

yhat.rf <- predict(rf.boston, newdata = Boston[-train,])

mean((yhat.rf - boston.test)^2)

[1] 20.06644

p/3
√p

17 / 23

The first measure is based upon the mean decrease of accuracy in
predictions on the out of bag samples when a given variable is permuted.

The second measure is a measure of the total decrease in node impurity
(the training RSS for regression trees, and the deviance for classification
trees) that results from splits over that variable, averaged over all trees.

varImpPlot(rf.boston)

18 / 23

Boosting

library(gbm)

set.seed(1)

boost.boston <- gbm(medv ~ ., data = Boston[train,], distribution =

"gaussian", n.trees = 5000, interaction.depth = 4)

library(vip)

vip(boost.boston)

19 / 23

These plots illustrate the marginal effect of the selected variables on the
response after integrating out the other variables.

In this case, as we might expect, median house prices are increasing with
rm and decreasing with lstat.

plot(boost.boston, i = "rm")

20 / 23

plot(boost.boston, i = "lstat")

21 / 23

How well does this boosted regression tree perform on the test set?

yhat.boost <- predict(boost.boston,

 newdata = Boston[-train,], n.trees = 5000)

mean((yhat.boost - boston.test)^2)

[1] 18.39057

If we want to, we can perform boosting with a different value of the
shrinkage parameter .
The default value is 0.001, here we take . .

boost.boston <- gbm(medv ~ ., data = Boston[train,],

 distribution = "gaussian", n.trees = 5000,

 interaction.depth = 4, shrinkage = 0.2, verbose = F)

yhat.boost <- predict(boost.boston,

 newdata = Boston[-train,], n.trees = 5000)

mean((yhat.boost - boston.test)^2)

[1] 16.54778

λ
λ = 0.2

22 / 23

Reference

James, G, Witten, D, Hastie, T, Tibshirani, R (2013) An Introduction to Statistical
Learning. Springer, New York, Second edition.

23 / 23

